News

Licensed Spectrum Survey for DAS and Small Cell Implementation November 05, 2018 07:00

Two questions for all of the wireless network installers and drive testers:

1)  Where can you get the spectrum assignments for all of the mobile carrier bands with in a county?

2)  How can you determine if the licensed spectrum assignment will change in the near future?

Allnet Insights' Web Spectrum Viewer now includes a Wireless Survey which details the wireless carrier that currently controls each block of Mobile Carrier spectrum (600MHz-2.5GHz) for a selected US county.  In addition, the Wireless Survey indicates whether there are any filed transaction that will move that spectrum to another wireless carrier, as indicated in the Future column.

The output table details the spectrum assignments,licensees, and bandwidth for each block and is sorted from lowest frequency to highest frequency.  This output table can be exported as a .csv file.  


Weekly FCC Spectrum Transactions October 22, 2018 06:30

Since blog postings of our Weekly Spectrum Transaction Summary emails are behind a subscription wall, I am posting last week's summary to show the detailed information that will arrive at your inbox every Friday, covering both the Mobile Carrier (600MHz-2.5GHz) and Millimeter Wave (12.2GHz-47GHz) transactions filed the previous week.
FCC Transactions - October 17, 2018
In this week's FCC transactions we see 4 transaction themes.  First, we see Cimaron Telephone / Cross Cable leasing an AWS3 license from Cross Telephone (a parent company).  Second, we see GE MDS leasing 4 - 700MHz Guard band licenses across the South and Southwest.  Third, we see a large filing from SpeedConnect providing them access to a varying number of channels on 35 call signs across the midwest, primarily in rural or low population areas.  The owned BRS channels are involved in most of these transactions which is surprising because it is Sprint's premium spectrum holding in all of these markets.  Most of these channels cover entire BTA market areas with contiguous spectrum.  Fourth, we see T-Mobile leasing RigNet's 700MHz C band license covering the entire Gulf of Mexico.  This will enable T-Mobile to build their LTE network for the oil platforms in the gulf.
Purpose Assignee Assignor CallSign Map RadioService Market ChannelBlock
New Lease Cimaron Telephone Cross Telephone Company WRBQ838 AWS3 CMA598 - Oklahoma 3 - Grant G
New Lease GE MDS LLC Access 700 WPRR314 700MHz GB MEA025 - Nashville A
New Lease GE MDS LLC Access 700 WPRV427 700MHz GB MEA008 - Atlanta A
New Lease GE MDS LLC Access 700 WPRV430 700MHz GB MEA024 - Birmingham A
New Lease GE MDS LLC Access 700 WPRV439 700MHz GB MEA038 - San Antonio A
New Lease SpeedConnect Sprint B064 Map BRS BTA064 - Butte, MT BRS1
New Lease SpeedConnect Sprint B064 Map BRS BTA064 - Butte, MT E4
New Lease SpeedConnect Sprint B064 Map BRS BTA064 - Butte, MT F1
New Lease SpeedConnect Sprint B064 Map BRS BTA064 - Butte, MT F2
New Lease SpeedConnect Sprint B064 Map BRS BTA064 - Butte, MT F3
New Lease SpeedConnect Sprint B064 Map BRS BTA064 - Butte, MT F4
New Lease SpeedConnect Sprint B064 Map BRS BTA064 - Butte, MT H1
New Lease SpeedConnect Sprint B064 Map BRS BTA064 - Butte, MT H2
New Lease SpeedConnect Sprint B064 Map BRS BTA064 - Butte, MT H3
New Lease SpeedConnect Sprint B144 Map BRS BTA144 - Flagstaff, AZ BRS1
New Lease SpeedConnect Sprint B144 Map BRS BTA144 - Flagstaff, AZ E4
New Lease SpeedConnect Sprint B144 Map BRS BTA144 - Flagstaff, AZ F4
New Lease SpeedConnect Sprint B167 Map BRS BTA167 - Grand Island-Kearney, NE BRS1
New Lease SpeedConnect Sprint B171 Map BRS BTA171 - Great Falls, MT BRS2
New Lease SpeedConnect Sprint B171 Map BRS BTA171 - Great Falls, MT E1
New Lease SpeedConnect Sprint B171 Map BRS BTA171 - Great Falls, MT E2
New Lease SpeedConnect Sprint B171 Map BRS BTA171 - Great Falls, MT E3
New Lease SpeedConnect Sprint B171 Map BRS BTA171 - Great Falls, MT E4
New Lease SpeedConnect Sprint B171 Map BRS BTA171 - Great Falls, MT F1
New Lease SpeedConnect Sprint B171 Map BRS BTA171 - Great Falls, MT F4
New Lease SpeedConnect Sprint B202 Map BRS BTA202 - Idaho Falls, ID BRS1
New Lease SpeedConnect Sprint B202 Map BRS BTA202 - Idaho Falls, ID BRS2
New Lease SpeedConnect Sprint B202 Map BRS BTA202 - Idaho Falls, ID E4
New Lease SpeedConnect Sprint B202 Map BRS BTA202 - Idaho Falls, ID F4
New Lease SpeedConnect Sprint B205 Map BRS BTA205 - Iowa City, IA BRS1
New Lease SpeedConnect Sprint B205 Map BRS BTA205 - Iowa City, IA BRS2
New Lease SpeedConnect Sprint B205 Map BRS BTA205 - Iowa City, IA E4
New Lease SpeedConnect Sprint B205 Map BRS BTA205 - Iowa City, IA F4
New Lease SpeedConnect Sprint B300 Map BRS BTA300 - Missoula, MT BRS1
New Lease SpeedConnect Sprint B353 Map BRS BTA353 - Pocatello, ID BRS1
New Lease SpeedConnect Sprint B353 Map BRS BTA353 - Pocatello, ID BRS2
New Lease SpeedConnect Sprint B353 Map BRS BTA353 - Pocatello, ID E4
New Lease SpeedConnect Sprint B353 Map BRS BTA353 - Pocatello, ID F4
New Lease SpeedConnect Sprint B422 Map BRS BTA422 - Sioux Falls, SD BRS1
New Lease SpeedConnect Sprint B422 Map BRS BTA422 - Sioux Falls, SD BRS2
New Lease SpeedConnect Sprint B422 Map BRS BTA422 - Sioux Falls, SD E4
New Lease SpeedConnect Sprint B422 Map BRS BTA422 - Sioux Falls, SD F4
New Lease SpeedConnect Sprint B451 Map BRS BTA451 - Twin Falls, ID BRS1
New Lease SpeedConnect Sprint B451 Map BRS BTA451 - Twin Falls, ID E4
New Lease SpeedConnect Sprint B451 Map BRS BTA451 - Twin Falls, ID F4
New Lease SpeedConnect Sprint WFY431 Map BRS P00089 - P35 GSA,40-43-38 N,99-7-41.3 W BRS1
New Lease SpeedConnect Sprint WFY595 Map BRS P03002 - P35 GSA,41-32-48.1 N,90-27-56.5 W BRS1
New Lease SpeedConnect Sprint WGW275 Map BRS P03471 - P35 GSA,43-28-24.1 N,83-50-39.9 W E4
New Lease SpeedConnect Sprint WHI959 Map BRS P00168 - P35 GSA,43-59-30.9 N,96-46-11.2 W F4
New Lease SpeedConnect Sprint WHT588 Map BRS P03685 - P35 GSA,41-31-58.1 N,90-34-40.5 W E4
New Lease SpeedConnect Sprint WLK328 Map BRS P01359 - P35 GSA,43-14-38 N,97-22-39.2 W F4
New Lease SpeedConnect Sprint WLK384 Map BRS P01362 - P35 GSA,43-14-38 N,97-22-39.2 W E4
New Lease SpeedConnect Sprint WLW827 Map BRS P01384 - P35 GSA,31-25-16.6 N,100-32-37.3 W F1234
New Lease SpeedConnect Sprint WLW894 Map BRS P01898 - P35 GSA,41-31-58.1 N,90-34-40.5 W F4
New Lease SpeedConnect Sprint WMH800 Map BRS P02690 - P35 GSA,34-13-58.1 N,112-22-15.6 W E4
New Lease SpeedConnect Sprint WMI345 Map BRS P01925 - P35 GSA,41-54-33 N,91-39-17.6 W E4
New Lease SpeedConnect Sprint WMI827 Map BRS P02939 - P35 GSA,34-42-17.1 N,112-6-57.6 W E4
New Lease SpeedConnect Sprint WMI864 Map BRS P02941 - P35 GSA,34-42-17.1 N,112-6-57.6 W F4
New Lease SpeedConnect Sprint WML478 Map BRS P03544 - P35 GSA,31-25-16.6 N,100-32-37.3 W BRS1
New Lease SpeedConnect Sprint WMX344 Map BRS P03719 - P35 GSA,43-30-10.9 N,96-34-39.2 W F4
New Lease SpeedConnect Sprint WMX358 Map BRS P01947 - P35 GSA,43-30-10.9 N,96-34-39.2 W E4
New Lease SpeedConnect Sprint WMX656 Map EBS P00155 - P35 GSA,42-43-54 N,114-25-7 W D1234
New Lease SpeedConnect Sprint WMX678 Map EBS P00017 - P35 GSA,42-43-54 N,114-25-7 W C1234
New Lease SpeedConnect Sprint WMX908 Map BRS P03551 - P35 GSA,31-25-16.6 N,100-32-37.3 W E1234
New Lease SpeedConnect Sprint WNTC543 Map BRS P01566 - P35 GSA,31-25-16.6 N,100-32-37.3 W H1
New Lease SpeedConnect Sprint WNTC543 Map BRS P01566 - P35 GSA,31-25-16.6 N,100-32-37.3 W H2
New Lease SpeedConnect Sprint WQLW472 Map BRS BTA070 - Cedar Rapids, IA BRS2
New Lease SpeedConnect Sprint WQLW472 Map BRS BTA070 - Cedar Rapids, IA E4
New Lease SpeedConnect Sprint WQLW472 Map BRS BTA070 - Cedar Rapids, IA F4
New Lease SpeedConnect Sprint WQLW474 Map BRS BTA105 - Davenport, IA-Moline, IL BRS2
New Lease SpeedConnect Sprint WLW970 Map BRS P02673 - P35 GSA,35-14-2 N,111-36-27.6 W F4
New Lease SpeedConnect Sprint WMI320 Map BRS P02694 - P35 GSA,35-14-29 N,111-36-37.6 W E4
New Lease SpeedConnect Sprint B011 Map BRS BTA011 - Alpena, MI BRS1
New Lease SpeedConnect Sprint B011 Map BRS BTA011 - Alpena, MI E4
New Lease SpeedConnect Sprint B011 Map BRS BTA011 - Alpena, MI F1
New Lease SpeedConnect Sprint B011 Map BRS BTA011 - Alpena, MI F2
New Lease SpeedConnect Sprint B011 Map BRS BTA011 - Alpena, MI F3
New Lease SpeedConnect Sprint B011 Map BRS BTA011 - Alpena, MI F4
New Lease SpeedConnect Sprint B011 Map BRS BTA011 - Alpena, MI H1
New Lease SpeedConnect Sprint B011 Map BRS BTA011 - Alpena, MI H2
New Lease SpeedConnect Sprint B011 Map BRS BTA011 - Alpena, MI H3
New Lease SpeedConnect Sprint B307 Map BRS BTA307 - Mt. Pleasant, MI E4
New Lease SpeedConnect Sprint B307 Map BRS BTA307 - Mt. Pleasant, MI F4
New Lease SpeedConnect Sprint B390 Map BRS BTA390 - Saginaw-Bay City, MI E4
New Lease SpeedConnect Sprint B390 Map BRS BTA390 - Saginaw-Bay City, MI F4
New Lease T-Mobile RigNet WPWV330 700MHz CMA306 - Gulf of Mexico C

Transforming the 2.5 GHz Band April 24, 2018 13:57

On April 19th, the FCC opened a docket to collect comments related to "Transforming the 2.5 GHz Band".  As background, the US 2.5GHz spectrum band encompasses 33 channels.  20 channels (A, B, C, D, and G groups) are designated for Educational Broadcast Service (EBS) and 13 (BRS1/2, E, F, and H) are designated for Broadband Radio Service (BRS).  

License Area:

Sprint owns a vast majority of the BRS licenses and leases a vast majority of the EBS licenses.  The licensing limitations for this spectrum are drawn from its origins providing broadcast video services.  The original licenses were formed as 35 mile radius circles centered on the video transmitting site.  When two licenses overlapped, a football shaped area would be formed.  A line would be drawn through the end points of the "football" splitting the overlapping license area between the two licensees.  BRS licenses include both 35 mile radius licenses, geographic area licenses (entire BTA) and Entire BTA license with cutouts for existing 35 mile radius licenses.

In 2009, a Broadband Radio Service auction (Auction 86) included the remaining unlicensed areas within each BTA for the BRS channels, but the unlicensed area in each BTA for the EBS channels was not auctioned.

Channel Plan Transition:

Prior to this point, Clearwire was launching pre-WiMax networks on the EBS/BRS pre-transition band plan which was designed around video operation.  As you can see in the Pre-Transition chart below, the A channels (A1, A2, A3, and A4) are separated by the B channels (B1, B2, B3, and B4).  This allowed all of the A channels to be broadcast at a video site without interference.  Clearwire would need to control both sets of the "interleaved" channels to have enough contiguous spectrum to launch their RAN network in a market.

To facilitate data network deployments and to protect the remaining video operations the FCC provided a way to transistion licenses to the Post-Transition band plan on a BTA market basis.  If there was a significant commercial video operation in a market, that BTA market was able waived from transition and it stayed with the Pre-Transition band plan.  The Post-Transition band plan put the remaining video operators into the mid-band segment (A4, B4, C4, D4, G4, F4, and E4) and provides contiguous spectrum (16.5MHz) for the rest of the channel group (e.g. A1, A2, and A3)

FCC Request for Comments:

License Area:

The FCC has expressed a desire to make the EBS unlicensed area available for use.  The FCC has asked whether the expansion of the licenses should include the entirety of the census tracks that license (35 mile) intersects or the entire county that the license intersects.  The map below from the National EBS Association (NEBSA) illustrates the counties that would be added to each intersecting EBS license for the A1 channel.  For the carriers that already lease these licenses, they would have the opportunity to deploy sites on the larger license area and would likely also pay the licensee a higher monthly payment due to the increase in licensed population.   As you can also note below, this approach still leaves all of the white counties unlicensed.

 The FCC would like to license the white counties in a 4 step manner:

  1. Existing licenses could extend their license areas to the borders of the counties they currently intersect but there may be requirements on how much of each county you must already cover.
  2. Rural tribal nations can apply for licenses covering their local area.  License areas could be census tracks or counties.
  3. Accredited schools or governmental entities can apply for their local area licenses.  License areas could be census tracks or counties.
  4. Auction remaining unlicensed area with competitive bidding.

Service Rules:

The FCC is also proposing to change the service rules for the EBS spectrum to allow the spectrum to be sold to commercial operators rather than requiring leases.

Remaining Pre-transition Markets:

The FCC is also proposing to complete transitioning the remaining pre-transition markets so a consistent band plan would be in use nationwide.  A few wireless cable operators had received waivers but most of those operators have ceased operations.  This will clear interference issues between markets and facilitate the deployment of data in the Lower Band Segment (A,B,C, and D groups) and the Upper Band Segment (E,F,G, and H groups).  Video operations will continue in the Mid Band Segment (A4, B4, C4, D4,G4,F4, and E4) in the markets where they operate today.


Spectrum Trades - Highlighting Market Spectrum Changes March 10, 2017 14:30

In my most recent post on the filed FCC Transactions for February 2017 there were over 275 call signs that were assigned to new licensees and nearly 100 call signs that were leased.  In an industry driven by spectrum, these changes affect the operations for every wireless carrier, they change site interference, and they affect the channels that are programmed into private repeaters and DAS systems.

So how can your company stay on top of the changes that may affect your markets.  Allnet Insights' publishes a National Carrier Spectrum Depth Report which details the spectrum held by Verizon, AT&T, T-Mobile, Sprint, Dish, and USCellular in the Top 100 Cellular Market Areas (CMA).  We report both the spectrum that each carrier currently holds (Current Holdings) and the spectrum they will hold in the future (Future Holdings) based on pending FCC transactions.  Reporting on both current and future holdings enables Allnet Insights' to also report on the changes between current and future holdings which highlight the location and quantity of spectrum that is changing hands.

Below is a screenshot of the 11th through the 25th most populated CMA markets in our February 2017 report.  This highlights the markets where the national carriers are either increasing or decreasing their spectrum holdings.  In the Excel report you can reveal specific holdings by frequency bands that are changing but for this post, we will stay with the total spectrum view.   From this view, you can see that in San Diego, T-Mobile is increasing their held spectrum by 5MHz while AT&T is decreasing their held spectrum by 5MHz.  The reverse is happening in the Sacramento CMA.

We also highlight the spectrum that is changing hands in our Web Spectrum Viewer.  In the Spectrum Grid menu, we lower case the 3 letter carrier code to indicate that the carrier ownership is changing from the current to the future.  Looking at the same San Diego market (San Diego County) you can see (tmo) on the PCS B6 spectrum.  Since this screen shot is of the Future Holdings, T-Mobile is will control this spectrum in the future.   

Future:

The screen shot below is of the San Diego County Current Holdings. (att) in the PCS B6 column indicates that AT&T is the current operator of the B6 channel. 

Current:

For Sacramento (Placer, Sacramento, and Yolo Counties), we can see that AT&T will be the future operator of the PCS B11 channel and that T-Mobile will be the carrier giving up the PCS B11 channel. 

Future:

Current:

 My last example is in Tucson, AZ.  From the National Carriers Report we can see that T-Mobile is increasing their held spectrum by 10MHz.   

From the Web Spectrum Viewer, it is clear that T-Mobile is receiving the PCS A10 and A11 channels from Commnet (cmm).

Future:

Current: 

 

 


FCC Spectrum Transactions - February 2017 March 06, 2017 06:30

Today, we have released Allnet's Insights' March 2017 Mobile Carrier - Spectrum Ownership Analysis Tool.  Below are the transactions that have been updated by the FCC from February 1st to February 28th and are included in our update. 

The details for all of the below transactions are available by subscribing to Allnet Insights' Web Tool - Basic Module.  Our Web Tool provides spectrum transaction detail, a spectrum grid of spectrum owners at a county level, and spectrum database covering all mobile carrier frequencies from 600MHz to 2.5 GHz.

Granted Assignments (Assigning Ownership from Assignor to Assignee):

Granted Leases (Leased to Assignee from Assignor):

New Pending Assignments (Assigning Ownership from Assignor to Assignee):

Pending Leases (Leased to Assignee from Assignor):


FCC Spectrum Transactions - December 2016 January 05, 2017 18:30

Today, we have released Allnet's Insights' January 2017 Mobile Carrier - Spectrum Ownership Analysis Tool.  Below are the transactions that have been updated by the FCC from December 1 to December 31 and are included in our update. 

The details for all of the below transactions are available by subscribing to Allnet Insights' Web Tool - Basic Module.  Our Web Tool provides spectrum transaction detail, a spectrum grid of spectrum owners at a county level, and spectrum database covering all mobile carrier frequencies from 700MHz to 2.5 GHz.

Granted Assignments (Assigning Ownership from Assignor to Assignee):

Granted Leases (Leased to Assignee from Assignor):

New Pending Assignments (Assigning Ownership from Assignor to Assignee):

Pending Leases (Leased to Assignee from Assignor):

 


Sprint's Spectrum for LTE in the PCS Band December 13, 2016 20:46

In this blog post I am going to explore how Sprint can configure their PCS spectrum for LTE using Allnet Insights' Mobile Carrier Spectrum Ownership Analysis Tool.  As a review Sprint's initial LTE deployment utilized a 5 MHz PCS G Block channel.  In the map below I have determined the maximum channel size for spectrum that is contiguous with Sprint's initial LTE channel.  In Seattle, Sprint can expand their initial channel to a 10MHz LTE channel while in Las Vegas Sprint can expand their initial channel to a 20MHz channel.

Looking at the Las Vegas market area with Allnet Insights' Spectrum Grid Module, you can see the specific channels Sprint controls in each county.  For Clark County, Sprint controls all of the C block channels along with the G block.  Unfortunately for Sprint, they can't use the entire 20MHz for LTE since they still need PCS spectrum for their CDMA voice service.  In Esmeralda County Sprint has 15MHz of spectrum including the G block that should be configured for LTE with 10MHz of the A block channels available for CDMA voice.

 

The map below details the largest channel size of PCS spectrum that Sprint controls aside from the spectrum contiguous with the G block.  This is the spectrum that can be shared with CDMA voice and could also be deployed in Sprint's FDD-LTE carrier aggregation scheme.


Sprint Available LTE Spectrum in the 2.5 GHz Mid-band Segment (Follow Up) November 15, 2016 22:47

In an earlier post, I discussed the ability for Sprint to utilize the Mid-Band Segment of their 2.5GHz spectrum band for LTE.  Previously, I had compiled from FCC filings, the BTA markets where video (the original service licensed in the 2.5 GHz band) is still operating.  Since the April 2016 post, Allnet Insights' has investigated below the BTA market level to determine the specific licenses that are still broadcasting video.  This can be seen in Allnet Insights' Web Spectrum Viewer, in the Spectrum Grid menu.

In the Web Spectrum Viewer, we use the MVU code instead of a typical carrier code (e.g. VZW, SPR, TMO, or ATT) to designate the licenses that are still broadcasting video.  In the Los Angeles CMA market, video is operating on all of the mid-band channels (A4, B4, C4, D4, F4, and E4) for both Los Angeles county, and Orange county.  Sprint can utilize the entire MBS for LTE in the Riverside and San Bernardino counties.

Los Angeles CMA:

In the Chicago CMA the G4 channel is used in all 6 counties and the E4 channel is used for video in 3 counties.

Chicago CMA:

In the New York CMA, the D4 channel and G4 channel are available for LTE deployment across all but one county in the New York CMA, but the other channels are largely unavailable in the New York CMA.

New York CMA:

What is important to Sprint is the size of the LTE channel or channels that they can create using the Mid-band channels.  Using the data from Allnet Insights' Spectrum Grid, we total the number of contiguous channels, rounding to the 3GPP LTE channel sizes of 5, 10, 15, and 20 MHz.  The map below displays the total MHz of the LTE channels that Sprint can create in the Mid-band for each county.


Change in Spectrum Holdings? September 13, 2016 08:30

With this blog post, we are highlighting the Change in Spectrum Holdings feature of our National Carriers - Spectrum Holdings reports.  In this report, we detail the spectrum holdings for each of the national carriers, including Dish, and USCellular.  The first segment of the report details each carrier's future holdings, tracking the effects of all pending FCC transactions.  The second segment of the report details each carrier's current spectrum holdings.  Using each of these segments, we provide a Change in Spectrum Holdings segment which highlights the CMA markets where a carrier's spectrum holding are increasing (+) or decreasing (-) because of filed FCC transactions.

In the view above, from August 2016, you can see the summary details for the spectrum additions and subtractions for each of the national wireless carriers.  This view highlights a spectrum trade between Sprint and T-Mobile in the Cleveland market (5 MHz) as well as the T-Mobile's pending 700MHz A-Block transactions.

 The view above details the band classifications (low, mid, or high) and the frequency band that contribute to T-Mobile's 12 MHz increase in spectrum.  The August 2016 report concludes that the transactions for all of the listed market names are still pending.

Now looking at the September 2016, the Allnet's Spectrum Ownership Analysis Tool has updated the transactions that were consummated during August 2016.  The only pending 700MHz - A Block transaction is T-Mobile's purchase of Laser in Chicago, IL.

For the cost of a monthly subscription to the National Carrier - Spectrum Depth Reports ($495/mo), the monthly effect of pending and closed transaction can be seen and evaluated.


How Does Our Data Compare? Sprint Spectrum Chart September 08, 2016 08:30

For this edition of "How Does Our Data Compare?" we are illustrating how our data compares to a Spectrum Chart that Sprint shared with Fierce Wireless at CTIA 2016.  What Sprint is illustrating each of the national carriers average spectrum holdings in each in each frequency band.  

We arrive at the Nationwide average by applying a population-weighted average to our spectrum data that is aggregated at a county-level.  As you can see, we hit each carriers spectrum depth exactly except for Sprint's EBS/BRS data which we only miss by 2 MHz.   With our October 2016 Version of our Mobile Carrier - Spectrum Ownership Analysis Tool, we are including the ability to chart eight carriers, detailing the average spectrum holdings either by Frequency Band or Band Classification.  You can conduct side by side analysis for nearly 1900 US Wireless Carriers.  In the chart below you can see the National Averages for spectrum held by the FCC.  This total details the AWS-3 and 600 MHz spectrum that will be auctioned by the FCC.

Our National Spectrum by Band Classification chart combines the values for each of the frequency bands into the Low, Mid, or High Band Classifications.

In addition to the National Spectrum values and charts, Allnet's Mobile Carrier - Spectrum Ownership Analysis Tool provides market-level (CMA, EA, PEA), state-level, and county-level reports for 8 carriers side by side.


FCC Spectrum Transactions - August 2016 September 06, 2016 08:30

Today we have released Allnet's September 2016 Mobile Carrier - Spectrum Ownership Analysis Tool.  Below are the transactions that have been updated by the FCC from August 1st to August 31st and are included in our update.

During August the following noteworthy transactions were completed:

  • T-Mobile's 2Q16 700MHz A-Block acquisitions
    • Continuum
    • US Cellular
    • Cavalier
    • C Spire
  • T-Mobile and US Cellular's AWS-3 spectrum trade
  • Verizon's lease of XO's 5G spectrum (Next Link)

Granted Assignments (Assigning Ownership from Assignor to Assignee)

Granted Leases (Leased to Assignee from Assignor):

New Pending Assignments (Assigning Ownership from Assignor to Assignee)

Pending Leases (Leased to Assignee from Assignor):


Limits to Sprint's 2.5 GHz MBS (Mid-band Segment) Spectrum Deployments April 19, 2016 08:30

Recently Allnet Insights compiled the video broadcasting status for the mid-band 2.5 GHz spectrum for every US BTA.  The map below indicates whether Sprint will be able to utilize the mid-band channels in particular markets.  In the red Base Trading Area (BTA) markets below, Sprint is restricted from utilizing the channels in the mid-band segment (MBS) because high power video operations remain on channels within this band.  This restricts access to 42 MHz of the 188 MHz of spectrum available in the EBS/BRS (2.5 GHz) spectrum.  In many markets, Sprint owns or leases nearly 160 MHz of this spectrum.  So including these restrictions, effectively reduce Sprint's usable spectrum holdings to 120 MHz in these markets.  Video operations limit Sprint's spectrum in all of the Top 20 markets except Seattle.  The video operators in each of these markets have broadcasting sites and receiving antennas distributed schools and churches through out the broadcasting cities.

Recall that the entire 2.5 GHz spectrum band previous to 2006 was utilized for video broadcasts, either wireless cable or educational video broadcasts.  As Clearwire began to utilize this band, they moved the remaining video broadcasters to the mid-band.  Below you can see how a licensee with the A1, A2, A3, and A4 channels would receive 3 - 5.5MHz channels in the low band segment (LBS) which would be used for LTE while the A4 channel would be shifted to the mid-band segment as a 6 MHz channel.  A licensee with the G1, G2, G3, and G4 channels would receive 3 - 5.5MHz channels in the UBS (upper band segment) and the G4 channel would be shifted to the mid-band segment again as a 6 MHz channel.  


Allnet Insight’s Top 20 Peak Downlink Throughput September 01, 2015 10:00

 

                   

These graphs detail the peak capacity for downlink files and streaming video for the four major national wireless carriers plus Dish and USCellular.  They illustrate the peak capacity on a market-by-market basis.  In creating the graphs, I anticipate the usage of each wireless carrier’s total spectrum available, not just the spectrum they have dedicated to LTE at this time. These graphs allow you to see the significant capacity advantage that Sprint will have once they deploy their 2.5GHz spectrum. They also provide a market-by-market comparison of AT&T and Verizon capacity.  You can see that AT&T has a capacity advantage versus Verizon in all Top 20 markets except Minneapolis-St. Paul.  In addition, you can see the relatively low capacity that T-Mobile is able to offer and the capacity that Dish could provide after they launch a network. 

I was able to construct these graphs by using Allnet Insights and Analytics Spectrum Ownership Analysis Tool determine the number of LTE channels that each carrier’s spectrum can support.

 Assuming that each LTE channel had the follow achievable LTE Peak Data Rates:

These rates were applied to each of the carriers LTE channels to create a total peak downlink throughput.  For all EBS/BRS spectrum (Sprint’s 2.5GHz spectrum), I assumed TDD (Time Division Duplex) LTE operation and each channel’s throughput was reduced to 75% to reflect the 75:25 downlink to uplink ratio for TDD operation. TDD LTE utilizes a single radio channel to both transmit to the mobile device (downlink) and transmit from the mobile device (uplink). In TDD LTE timeslots, similar to the wedges on the Wheel of Fortune, carry either downlink traffic or uplink traffic during that time interval.  Since internet traffic is typically 75% downlink and 25% uplink, US operators dedicate 75% of the wedges to downlink and 25% to uplink.  Most US spectrum bands are configured for FDD (Frequency Division Duplex) LTE, which utilizes two radio channels, one to transmit to the mobile device (downlink), and one to transmit from the mobile device (uplink).


Increased Spectrum Depth - Top 100 Markets February 10, 2015 14:38

For the next four days we will be posting a map each day for one of the national spectrum holders that indicates the amount of spectrum they are adding to their spectrum holdings in the Top 100 Cellular Market Areas.  The primary source of the additions on these maps are the AWS-3 spectrum licenses although other proposed (FCC filed) transactions are included.  For T-Mobile below, the additional spectrum depth in Seattle, Tacoma, and Portland relates to a 700MHz A-block acquisition from Vulcan while the Pittsburgh market reflects both a 700MHz A-block acquisition (from McBride) and a AWS-3 H block acquisition via the auction.





US - Carrier Aggregation Plans February 06, 2015 10:33

In the charts below, we present the current carrier aggregation plans for AT&T, Verizon, USCellular, Dish, T-Mobile, and Sprint.  Green indicates that particular frequency block is used one time in the aggregation scheme.  Yellow indicates that particular frequency block is used twice in the aggregation scheme.  For both the green and yellow highlights, only one carrier can be utilized in each frequency block.  The blue highlights indicate that multiple carriers can be utilized in each frequency block (non contiguous).

AT&T


Verizon

















T-Mobile



Sprint


Dish


 US Cellular





AWS-3 Auction Results - Spectrum Grid February 02, 2015 13:15

AllNet's Spectrum Ownership Analysis Tool has been updated to include all of the AWS-3 auction results in all of its Analysis Modules.  Below in the Spectrum Grid Module, you can see which carrier acquired the spectrum rights for each  of the uplink channels in the Top 5 CMA markets.


The screenshot of the downlink channels also provides a view into where Dish's AWS-4 spectrum fits with their new AWS-3 spectrum.



Enhanced Market Level Reports November 04, 2014 11:08

The November 2014 Spectrum Ownership Analysis Tool includes several enhancements to the Market Level Reports.  Market Level Reports are available for Cellular Market Areas (CMA) and Economic Areas (EA).  Initially these market level reports only included spectrum depth values for each carrier by spectrum band.  With this update, you can see each selected carrier's total spectrum holdings, their spectrum holdings in each of the primary band classes (Low Band, Mid Band, and High Band), and their spectrum holdings in each spectrum band.

The band classes are defined as follows:

  • Low Band
    • 700MHz
    • Cellular/SMR
  • Mid Band
    • L Band/S Band (AWS-4)
    • AWS-1
    • PCS
    • AWS -3 (when the auction is complete)
  • High Band
    • WCS
    • EBS/BRS
The user can select 8 carriers to be displayed in these reports from the 580 carriers available in the Spectrum Ownership Analysis Tool.  For the examples below, we have included most of the national wireless carriers as well as a few regional carriers.

The spectrum depth values for each of these reports are determined from the county-level spectrum ownership information in the Spectrum Ownership Analysis Tool using a population-weighted average.  This means that each of the county-level spectrum depth values is multiplied by a ratio of the county's population divided by the market population.  This provides for a higher weighting for spectrum depth in higher population counties.

CMA Market Report - Total Spectrum Depth and Spectrum Depth by Band Class


CMA Market Report - Spectrum Depth by Frequency Band


AWS - 3 Auction Tools October 15, 2014 14:21

In support of the upcoming auctions we have included the available AWS3 channels in our Spectrum Grid worksheet and we have added both a CMA and EA Market Report.  
In the Spectrum Grid you can see the primary spectrum owner for any spectrum band, including the adjacent AWS1 band, at a county level.  The CMA Market Report displays the spectrum holdings for 8 selected carriers utilizing the Cellular Market Area (CMA) geographic boundaries. The EA Market Report displays the spectrum holdings for 8 selected carriers utilizing the Economica Area (EA) geographic boundaries. For both of these reports, AllNet's county-level data is population weighted averaged to either the CMA or EA markets.

Spectrum Grid (AWS3 Portion)
CMA Market Report 
EA Market Report 

Will Rural America get a 3rd National Wireless Provider? July 16, 2014 11:18

The news yesterday that T-Mobile and Sprint are forming a Joint Venture to buy 600MHz Broadcast Incentive Auction spectrum shows a shift in the way that both Sprint and T-Mobile look at the places that aren't  in non-Top 100 markets, along Interstates, or along US Highway routes.  

Will the T-Mobile/Sprint JV use this low band spectrum to fill out the areas that they rely on partners (primarly AT&T and Sprint) to provide their coverage? 

Virtually all of T-Mobile's recently acquired 700MHz A band spectrum is in large cities (see my post from 11/2013) and Sprint has been reluctant to add towers in rural areas to utilized the 7MHz of low band SMR spectrum that they are using elsewhere for their Spark service.

Sprint's Current Coverage

T-Mobile Coverage (Light Pink indicates Partner Coverage)


T-Mobile has signaled with the FCC that they are concerned about reasonable roaming rates and Sprint is clearly in the same position with Verizon, needing Verizon's coverage to offer true nationwide coverage.  On the other side of the coin, T-Mobile indicates that they already cover 96% of the US population, leaving about 12.5 million POPs to be covered with this new low band spectrum.

For both T-Mobile and Sprint a build out in these uncovered areas would reduce their risk of of significant rate increases or roaming service elimination with Verizon and AT&T, but these towers would be much less efficient than towers elsewhere in their collective networks.  Obviously they would share the deployment costs and operating cost, but with these towers would have serve a low number of POPS (population)/Tower which is a standard industry metric on capital efficiency for deployed towers.

How would this affect Sprint's recent regional partners?
Sprint Regional Partners
Building out this spectrum would put Sprint in direct competition with these recent formed partners.  These regional partners may also participate in the auction acquiring more spectrum.  Each of these partners only needs low band spectrum for wide area coverage, and there are ample amounts of mid-band (PCS/AWS) spectrum in these areas for these regional partners to uses as capacity grows.



Sprint and T-Mobile, A Deeper Look June 17, 2014 13:30

The first place to start on the rumored Sprint / T-Mobile merger/acquisition is to look at the merged entity's total spectrum holdings. AllNet Lab's Spectrum Analysis Tool with June 2014 FCC data was used for this analysis.  The Spectrum Analysis Tool is available at www.allnetlabs.com along with National Carrier Spectrum Holding and LTE Channel reports.  In the map below, you can see the counties where the the spectrum held will exceed the spectrum screen (Orange) or will greatly exceed the spectrum screen (Red).  In addition, you can see that in some counties the merged entity will have up to 374MHz of spectrum.
To see how this spectrum depth relates to the population that the licenses cover, we created a histogram evaluating the population covered by different spectrum depths.  The red line below indicates the sum of population in areas with similar spectrum depth.  For example, there are 10 million people in areas where Sprint/T-Mobile has 200MHz of spectrum and 79 million people in areas where Sprint/T-Mobile have 280MHz of spectrum.

The green line indicates the sum of the population as you increase the range from left to right.  For example, there are 1 million people in areas where Sprint/T-Mobile have 20MHz or less spectrum.  Considering a 195MHz spectrum screen, you can see that only 47 million people live in areas where Sprint/T-Mobile will be below the spectrum screen, thus Sprint/T-Mobile exceeds the spectrum screen over 85% of the US population.


Our last analysis summarizes the MHz-POPs for Sprint/T-Mobile by spectrum band.  WCS spectrum is listed but it is being transferred to AT&T.  Sprint's EBS/BRS spectrum still accounts for 55% of the combined entities MHz-POPs although the combined AWS and PCS spectrum represents 36%.  Using the MHz-POPs values, we can develop a National Average of Sprint/T-Mobile's spectrum holdings.  Looking again at the AWS and PCS spectrum holdings, Sprint/T-Mobile would average 38MHz of AWS spectrum and 65MHz of PCS spectrum across the country.


AllNet Lab's Spectrum Analysis Tool is an Excel based product which allows users to visualize and analyze the current spectrum ownership for all of the mobile carrier and satellite frequency bands at a county level for all 50 states and US territories.  The Spectrum Analysis Tool includes 15 color-coded spectrum holders and over 600 additional identified carriers.

National Carrier Spectrum Holdings - Top 100 CMA Markets February 22, 2014 15:07

AllNet Labs is now offering a monthly spectrum report summarizing the spectrum holdings for the National Carriers (Verizon, AT&T, Sprint, and T-Mobile).  To develop this report, AllNet Labs takes the spectrum outputs at a county level from its Spectrum Analysis Tooland applies a county population weighting before averaging all of the counties within a Cellular Market Area (CMA).  Data is available for all 733 CMA markets, but the standard report is formatted for the 100 most populated CMA markets.  This report is delivered as an Excel spreadsheet, with both summary and detailed views.  In the summary view (Figure 1), only the total spectrum holdings for each carrier are displayed.
Figure 1
By selecting the [+] in the upper margin to the right of AT&T spectrum holdings we can reveal  AT&T’s spectrum distribution by band.  This expanded view is seen below as Figure 2.
Figure 2
AllNet Labs has added a proposed transaction data set to the Spectrum Analysis Tool.  With this data set, we are able to simplify hundreds of license transfers at the FCC into the net effect for wireless operators.  All of the transactions are captured from the FCC Daily Digest and each license is updated at the callsign, county, and frequency levels.  Using this proposed transaction data, a matrix of the national carrier’s proposed spectrum holdings is created (Figure 3).  
Figure 3
 By selecting the [+] signs in the upper margin, a carrier’s spectrum holdings by band can be detailed.   (Figure 4).
Figure 4
The last matrix in this report summarizes the differences between the proposed spectrum holdings and the current spectrum holdings.  This highlights areas that are affected by proposed transactions.  The example shown uses data from the December 2013 Spectrum Analysis Tool.    The proposed transactions for December 2013 were transactions announced prior to 12/1 which included AT&T’s purchase of Leap as well as many other minor transactions.  The effect of that transaction as well as other more minor transactions is easily seen in Figure 5, with AT&T increasing their spectrum holdings in 6 of the 15 CMA markets listed.
Figure 5
 To see the changes at the spectrum band level of detail, select the [+] in the upper margin as described before.  As seen in Figure 6, AT&T’s increase in spectrum was the result of increases in AWS and PCS spectrum, which matches the known spectrum that Leap will bring to AT&T.
Figure 6
 AllNet Lab's Spectrum Analysis Tool is an Excel based product which allows users to visualize and analyze the current spectrum ownership for all of the mobile carrier and satellite frequency bands at a county level for all 50 states and US territories.  The Spectrum Analysis Tool includes 15 color-coded spectrum holders and over 600 additional identified carriers.  More information can be found at www.allnetlabs.com.


LTE Band Class Updates November 19, 2013 13:49

As I was completing my research for an upcoming blog on LTE Carrier Aggregation, I found that my previous LTE Band Class reference sheet was missing some of the more recent Band Class updates, so I decided to share my new reference document with a few comments.

FDD Band Classes:



The first notable band class addition in Band 30.  This band class creates a definition for FDD operation in the WCS (2.3GHz) band which was previously defined only for TDD operation.
From the Spectrum Grid view of the Spectrum Ownership and Analysis Tool, you can see that Band 30 does not include the 5MHz channels that AT&T purchased to essentially become guard bands for the Satellite Audio guys.  This will provide AT&T with a 10x10 LTE channel on a market by market basis, as they resolve the remaining ownership issues in the WCS band.

The next two band classes are not new, but I previously skipped over these band classes because I didn't fully understand their frequency breaks.

Band 26
Previously I thought this was a specific band for Sprint  IDEN operation that is adjacent to the cellular band.  This is the band where Sprint is placing their 2nd LTE channel (5 MHz) and a CDMA channel (1.23 MHz). Looking at the frequencies in detail, the band class covers the IDEN spectrum and the adjacent cellular spectrum.

This is similar to Sprint's Band 25 which includes all of the PCS band plus their G block spectrum (but not the H block).


So you would think that all of the North American carriers could standardize to Band 25 for PCS operation and Band 26 for Cellular. Using the latest iPhone 5s LTE band support,
you can see the Verizon, T-Mobile, and AT&T iPhone's support Band 2 and 25 for PCS, but only the cellular band (Band 5).  Sprint iPhone 5s includes,
both Band 2 and 25 for PCS and Band 5 and 26 for cellular.

Band 10:
This is referenced as the AWS extended band and you can note from above that it is not currently applied to smartphones like the iPhone 5s.  This band class seems to be a preparation for the future use of the AWS-2 and AWS-3 spectrum and the government shared use band that are both adjacent to the existing AWS spectrum band.  Here is how the downlink looks in the Spectrum Ownership Analysis Tool:
Note that Band 10 does not cover the entire band contemplated for AWS-3, nor does it include Dish's Band 23.  For the uplink:

This again depicts that Band 10 is not currently set to include the entire shared government opportunity.

TDD Band Classes:
Here is the reference sheet the TDD band classes.

On this reference sheet I hadn't looked closely at band classes 35, 36, and 37.  I had always focused on the 2.3GHz and 2.5GHz as the only bands that were designated for TDD support in North America.  These three band classes create 140MHz block of spectrum that could be for TDD deployment.  Here is how these bands appear in the Spectrum Ownership Analysis Tool:
I'm not sure what the history is on these band classes, but they would support TDD operation in both the PCS uplink and downlink bands as well as in the 20 MHz between the bands.  Since the PCS frequencies are highly deployed, I would consider it very unlikely to see TDD systems in this band in the near future, and I doubt that the PCS band is authorized for TDD operation.  It will be interesting to see whether any of the wireless carriers begin to look this direction.  With Sprint stepping out of the H block auction, they seem to be signalling that TDD operation is more important to them and the Band 37 block (including Sprint's G block) could be the reason why Dish is pushing forward in the H block auction.  Please comment if you are aware why the 3GPP has included these 3 TDD band classes.

Sprint Exits H Block Auction, Why?, timing... November 13, 2013 11:18

Although it surprised the wireless industry a bit, it does make sense that Sprint saw a declining value in the H block spectrum.  Acquiring that spectrum would have allowed Sprint to expand their primary LTE Channel from a 5x5 channel to a 10x10 channel. In terms of Mbps, from 37 Mbps per sector to 73 Mbps per sector.  If this could be added to the network today, it would bring Sprint to about par with the other 3 national carriers.  The problem is timing.  It will be mid-2014 before the spectrum will be awarded to the auction winner, but prior to receiving the spectrum, the high bidder could start the 18-24 month process to get the LTE band classifications changed.  Sprint would either have expanded the frequencies for their band 25 or requested a new band classification that would include all of the old PCS block, the PCS G block, and the PCS H block.  With the standards body work, including carrier aggregation, it would likely by early 2016 before network upgrades would begin.  This coincides with their forecasted completion of Project Spark.  If Sprint completes this project on-time, they will have 38,000 sites that will be enabled with 40MHz of 2.5GHz spectrum, which could be a game changer.  This does seem to signal that Sprint doesn't think their PCS G LTE is particularly strategic.

Verizon St Louis Spectrum Purchase, Carrier Aggregation, and Competitive Landscape November 06, 2013 09:26

It is interesting to look at the details of Verizon's spectrum purchase from US Cellular in the St Louis market area (EA-96).   Many industry sources talk about how purchase will provide 20MHz for Verizon's LTE.  While this is true, it should not be confused with Verizon deploying a 20 x 20 channel.  As can be seen from the Spectrum Grid view of AllNet Labs' Spectrum Ownership Analysis Tool, Verizon is purchasing the AWS B channel and previously owned the F channel.  Although Verizon will own 20 MHz of spectrum, it is not contiguous and until they can deploy Release 12 software code into their network, they will have to operate this spectrum as two separate 10 MHz channels.  Release 12 is likely a 2015 or maybe 2016 release since operators are either planning or deploying Release 10 currently. 

The industry talks alot about Carrier Aggregation (CA) but there are several facts that are not well understood.  First, Release 10 includes the functionality for carrier aggregation but the frequency band definitions for the US are not included until Release 11.  Another point that needs to be understood is that the initial definitions require that aggregated carriers be in contiguous blocks in different spectrum bands (inter-band) or in separate blocks but in the same band (intra-band).   For Release 11, only 2 carriers can be aggregated together.  For Release 12, Verizon has sponsored a work group that will allow 3 carriers to be aggregated, 1 from the 700MHz band and 2 different carriers from the AWS band.  Thus, Release 12 will be necessary for Verizon to aggregate their two AWS blocks of spectrum with their 700 MHz LTE.


The Spectrum Grid view is sorted by the EA geographical area which show that the AWS B and C licenses have not be dis-aggregated.  The A channel licenses do show discontinuity since they were originally auctioned as CMA licenses.  AT&T through their Leap purchase will strengthen their AWS ownership in this market.

To look at the competitive picture for spectrum in the St Louis market (EA-96) we can look at the 
Company By Band worksheet from the AllNet Labs' Spectrum Ownership Analysis Tool.  Looking first at Verizon, we can see the variety of spectrum depths across the EA that Verizon indicated in their FCC filing. Verizon will range from 62 MHz to 117 MHz depending on the county.  The only county that Verizon controls 117 MHz is Montgomery County, MO which is 40 miles west of St. Louis.  

Looking at the other carriers in this market we see that US Cellular will still control between 32 MHz and 69 MHz, while AT&T with their Leap purchase will control between 61 MHz and 105 MHz.


T-Mobile controls between 40 MHz and 60 MHz with two counties at 70 MHz and Sprint with their Clearwire purchase controls between 130 MHz and 242 MHz.