${{amount}} USD

my cart

Free Shipping On world wide

  • HOME
  • PRODUCTS
  • IN THE NEWS
  • SPECTRUM BLOG
  • WEB SPECTRUM VIEWER

Spectrum Blog

AWS-3 Auction Results - Spectrum Grid Mon, Feb 02, 2015

AllNet's Spectrum Ownership Analysis Tool has been updated to include all of the AWS-3 auction results in all of its Analysis Modules.  Below in the Spectrum Grid Module, you can see which carrier acquired the spectrum rights for each  of the uplink channels in the Top 5 CMA markets.


The screenshot of the downlink channels also provides a view into where Dish's AWS-4 spectrum fits with their new AWS-3 spectrum.



Enhanced Market Level Reports Tue, Nov 04, 2014

The November 2014 Spectrum Ownership Analysis Tool includes several enhancements to the Market Level Reports.  Market Level Reports are available for Cellular Market Areas (CMA) and Economic Areas (EA).  Initially these market level reports only included spectrum depth values for each carrier by spectrum band.  With this update, you can see each selected carrier's total spectrum holdings, their spectrum holdings in each of the primary band classes (Low Band, Mid Band, and High Band), and their spectrum holdings in each spectrum band.

The band classes are defined as follows:

  • Low Band
    • 700MHz
    • Cellular/SMR
  • Mid Band
    • L Band/S Band (AWS-4)
    • AWS-1
    • PCS
    • AWS -3 (when the auction is complete)
  • High Band
    • WCS
    • EBS/BRS
The user can select 8 carriers to be displayed in these reports from the 580 carriers available in the Spectrum Ownership Analysis Tool.  For the examples below, we have included most of the national wireless carriers as well as a few regional carriers.

The spectrum depth values for each of these reports are determined from the county-level spectrum ownership information in the Spectrum Ownership Analysis Tool using a population-weighted average.  This means that each of the county-level spectrum depth values is multiplied by a ratio of the county's population divided by the market population.  This provides for a higher weighting for spectrum depth in higher population counties.

CMA Market Report - Total Spectrum Depth and Spectrum Depth by Band Class


CMA Market Report - Spectrum Depth by Frequency Band


AWS - 3 Auction Tools Wed, Oct 15, 2014

In support of the upcoming auctions we have included the available AWS3 channels in our Spectrum Grid worksheet and we have added both a CMA and EA Market Report.  
In the Spectrum Grid you can see the primary spectrum owner for any spectrum band, including the adjacent AWS1 band, at a county level.  The CMA Market Report displays the spectrum holdings for 8 selected carriers utilizing the Cellular Market Area (CMA) geographic boundaries. The EA Market Report displays the spectrum holdings for 8 selected carriers utilizing the Economica Area (EA) geographic boundaries. For both of these reports, AllNet's county-level data is population weighted averaged to either the CMA or EA markets.

Spectrum Grid (AWS3 Portion)
CMA Market Report 
EA Market Report 

Will Rural America get a 3rd National Wireless Provider? Wed, Jul 16, 2014

The news yesterday that T-Mobile and Sprint are forming a Joint Venture to buy 600MHz Broadcast Incentive Auction spectrum shows a shift in the way that both Sprint and T-Mobile look at the places that aren't  in non-Top 100 markets, along Interstates, or along US Highway routes.  

Will the T-Mobile/Sprint JV use this low band spectrum to fill out the areas that they rely on partners (primarly AT&T and Sprint) to provide their coverage? 

Virtually all of T-Mobile's recently acquired 700MHz A band spectrum is in large cities (see my post from 11/2013) and Sprint has been reluctant to add towers in rural areas to utilized the 7MHz of low band SMR spectrum that they are using elsewhere for their Spark service.

Sprint's Current Coverage

T-Mobile Coverage (Light Pink indicates Partner Coverage)


T-Mobile has signaled with the FCC that they are concerned about reasonable roaming rates and Sprint is clearly in the same position with Verizon, needing Verizon's coverage to offer true nationwide coverage.  On the other side of the coin, T-Mobile indicates that they already cover 96% of the US population, leaving about 12.5 million POPs to be covered with this new low band spectrum.

For both T-Mobile and Sprint a build out in these uncovered areas would reduce their risk of of significant rate increases or roaming service elimination with Verizon and AT&T, but these towers would be much less efficient than towers elsewhere in their collective networks.  Obviously they would share the deployment costs and operating cost, but with these towers would have serve a low number of POPS (population)/Tower which is a standard industry metric on capital efficiency for deployed towers.

How would this affect Sprint's recent regional partners?
Sprint Regional Partners
Building out this spectrum would put Sprint in direct competition with these recent formed partners.  These regional partners may also participate in the auction acquiring more spectrum.  Each of these partners only needs low band spectrum for wide area coverage, and there are ample amounts of mid-band (PCS/AWS) spectrum in these areas for these regional partners to uses as capacity grows.



Sprint and T-Mobile, A Deeper Look Tue, Jun 17, 2014

The first place to start on the rumored Sprint / T-Mobile merger/acquisition is to look at the merged entity's total spectrum holdings. AllNet Lab's Spectrum Analysis Tool with June 2014 FCC data was used for this analysis.  The Spectrum Analysis Tool is available at www.allnetlabs.com along with National Carrier Spectrum Holding and LTE Channel reports.  In the map below, you can see the counties where the the spectrum held will exceed the spectrum screen (Orange) or will greatly exceed the spectrum screen (Red).  In addition, you can see that in some counties the merged entity will have up to 374MHz of spectrum.
To see how this spectrum depth relates to the population that the licenses cover, we created a histogram evaluating the population covered by different spectrum depths.  The red line below indicates the sum of population in areas with similar spectrum depth.  For example, there are 10 million people in areas where Sprint/T-Mobile has 200MHz of spectrum and 79 million people in areas where Sprint/T-Mobile have 280MHz of spectrum.

The green line indicates the sum of the population as you increase the range from left to right.  For example, there are 1 million people in areas where Sprint/T-Mobile have 20MHz or less spectrum.  Considering a 195MHz spectrum screen, you can see that only 47 million people live in areas where Sprint/T-Mobile will be below the spectrum screen, thus Sprint/T-Mobile exceeds the spectrum screen over 85% of the US population.


Our last analysis summarizes the MHz-POPs for Sprint/T-Mobile by spectrum band.  WCS spectrum is listed but it is being transferred to AT&T.  Sprint's EBS/BRS spectrum still accounts for 55% of the combined entities MHz-POPs although the combined AWS and PCS spectrum represents 36%.  Using the MHz-POPs values, we can develop a National Average of Sprint/T-Mobile's spectrum holdings.  Looking again at the AWS and PCS spectrum holdings, Sprint/T-Mobile would average 38MHz of AWS spectrum and 65MHz of PCS spectrum across the country.


AllNet Lab's Spectrum Analysis Tool is an Excel based product which allows users to visualize and analyze the current spectrum ownership for all of the mobile carrier and satellite frequency bands at a county level for all 50 states and US territories.  The Spectrum Analysis Tool includes 15 color-coded spectrum holders and over 600 additional identified carriers.

National Carrier Spectrum Holdings - Top 100 CMA Markets Sat, Feb 22, 2014

AllNet Labs is now offering a monthly spectrum report summarizing the spectrum holdings for the National Carriers (Verizon, AT&T, Sprint, and T-Mobile).  To develop this report, AllNet Labs takes the spectrum outputs at a county level from its Spectrum Analysis Tooland applies a county population weighting before averaging all of the counties within a Cellular Market Area (CMA).  Data is available for all 733 CMA markets, but the standard report is formatted for the 100 most populated CMA markets.  This report is delivered as an Excel spreadsheet, with both summary and detailed views.  In the summary view (Figure 1), only the total spectrum holdings for each carrier are displayed.
Figure 1
By selecting the [+] in the upper margin to the right of AT&T spectrum holdings we can reveal  AT&T’s spectrum distribution by band.  This expanded view is seen below as Figure 2.
Figure 2
AllNet Labs has added a proposed transaction data set to the Spectrum Analysis Tool.  With this data set, we are able to simplify hundreds of license transfers at the FCC into the net effect for wireless operators.  All of the transactions are captured from the FCC Daily Digest and each license is updated at the callsign, county, and frequency levels.  Using this proposed transaction data, a matrix of the national carrier’s proposed spectrum holdings is created (Figure 3).  
Figure 3
 By selecting the [+] signs in the upper margin, a carrier’s spectrum holdings by band can be detailed.   (Figure 4).
Figure 4
The last matrix in this report summarizes the differences between the proposed spectrum holdings and the current spectrum holdings.  This highlights areas that are affected by proposed transactions.  The example shown uses data from the December 2013 Spectrum Analysis Tool.    The proposed transactions for December 2013 were transactions announced prior to 12/1 which included AT&T’s purchase of Leap as well as many other minor transactions.  The effect of that transaction as well as other more minor transactions is easily seen in Figure 5, with AT&T increasing their spectrum holdings in 6 of the 15 CMA markets listed.
Figure 5
 To see the changes at the spectrum band level of detail, select the [+] in the upper margin as described before.  As seen in Figure 6, AT&T’s increase in spectrum was the result of increases in AWS and PCS spectrum, which matches the known spectrum that Leap will bring to AT&T.
Figure 6
 AllNet Lab's Spectrum Analysis Tool is an Excel based product which allows users to visualize and analyze the current spectrum ownership for all of the mobile carrier and satellite frequency bands at a county level for all 50 states and US territories.  The Spectrum Analysis Tool includes 15 color-coded spectrum holders and over 600 additional identified carriers.  More information can be found at www.allnetlabs.com.


LTE Band Class Updates Tue, Nov 19, 2013

As I was completing my research for an upcoming blog on LTE Carrier Aggregation, I found that my previous LTE Band Class reference sheet was missing some of the more recent Band Class updates, so I decided to share my new reference document with a few comments.

FDD Band Classes:



The first notable band class addition in Band 30.  This band class creates a definition for FDD operation in the WCS (2.3GHz) band which was previously defined only for TDD operation.
From the Spectrum Grid view of the Spectrum Ownership and Analysis Tool, you can see that Band 30 does not include the 5MHz channels that AT&T purchased to essentially become guard bands for the Satellite Audio guys.  This will provide AT&T with a 10x10 LTE channel on a market by market basis, as they resolve the remaining ownership issues in the WCS band.

The next two band classes are not new, but I previously skipped over these band classes because I didn't fully understand their frequency breaks.

Band 26
Previously I thought this was a specific band for Sprint  IDEN operation that is adjacent to the cellular band.  This is the band where Sprint is placing their 2nd LTE channel (5 MHz) and a CDMA channel (1.23 MHz). Looking at the frequencies in detail, the band class covers the IDEN spectrum and the adjacent cellular spectrum.

This is similar to Sprint's Band 25 which includes all of the PCS band plus their G block spectrum (but not the H block).


So you would think that all of the North American carriers could standardize to Band 25 for PCS operation and Band 26 for Cellular. Using the latest iPhone 5s LTE band support,
you can see the Verizon, T-Mobile, and AT&T iPhone's support Band 2 and 25 for PCS, but only the cellular band (Band 5).  Sprint iPhone 5s includes,
both Band 2 and 25 for PCS and Band 5 and 26 for cellular.

Band 10:
This is referenced as the AWS extended band and you can note from above that it is not currently applied to smartphones like the iPhone 5s.  This band class seems to be a preparation for the future use of the AWS-2 and AWS-3 spectrum and the government shared use band that are both adjacent to the existing AWS spectrum band.  Here is how the downlink looks in the Spectrum Ownership Analysis Tool:
Note that Band 10 does not cover the entire band contemplated for AWS-3, nor does it include Dish's Band 23.  For the uplink:

This again depicts that Band 10 is not currently set to include the entire shared government opportunity.

TDD Band Classes:
Here is the reference sheet the TDD band classes.

On this reference sheet I hadn't looked closely at band classes 35, 36, and 37.  I had always focused on the 2.3GHz and 2.5GHz as the only bands that were designated for TDD support in North America.  These three band classes create 140MHz block of spectrum that could be for TDD deployment.  Here is how these bands appear in the Spectrum Ownership Analysis Tool:
I'm not sure what the history is on these band classes, but they would support TDD operation in both the PCS uplink and downlink bands as well as in the 20 MHz between the bands.  Since the PCS frequencies are highly deployed, I would consider it very unlikely to see TDD systems in this band in the near future, and I doubt that the PCS band is authorized for TDD operation.  It will be interesting to see whether any of the wireless carriers begin to look this direction.  With Sprint stepping out of the H block auction, they seem to be signalling that TDD operation is more important to them and the Band 37 block (including Sprint's G block) could be the reason why Dish is pushing forward in the H block auction.  Please comment if you are aware why the 3GPP has included these 3 TDD band classes.

Sprint Exits H Block Auction, Why?, timing... Wed, Nov 13, 2013

Although it surprised the wireless industry a bit, it does make sense that Sprint saw a declining value in the H block spectrum.  Acquiring that spectrum would have allowed Sprint to expand their primary LTE Channel from a 5x5 channel to a 10x10 channel. In terms of Mbps, from 37 Mbps per sector to 73 Mbps per sector.  If this could be added to the network today, it would bring Sprint to about par with the other 3 national carriers.  The problem is timing.  It will be mid-2014 before the spectrum will be awarded to the auction winner, but prior to receiving the spectrum, the high bidder could start the 18-24 month process to get the LTE band classifications changed.  Sprint would either have expanded the frequencies for their band 25 or requested a new band classification that would include all of the old PCS block, the PCS G block, and the PCS H block.  With the standards body work, including carrier aggregation, it would likely by early 2016 before network upgrades would begin.  This coincides with their forecasted completion of Project Spark.  If Sprint completes this project on-time, they will have 38,000 sites that will be enabled with 40MHz of 2.5GHz spectrum, which could be a game changer.  This does seem to signal that Sprint doesn't think their PCS G LTE is particularly strategic.

Verizon St Louis Spectrum Purchase, Carrier Aggregation, and Competitive Landscape Wed, Nov 06, 2013

It is interesting to look at the details of Verizon's spectrum purchase from US Cellular in the St Louis market area (EA-96).   Many industry sources talk about how purchase will provide 20MHz for Verizon's LTE.  While this is true, it should not be confused with Verizon deploying a 20 x 20 channel.  As can be seen from the Spectrum Grid view of AllNet Labs' Spectrum Ownership Analysis Tool, Verizon is purchasing the AWS B channel and previously owned the F channel.  Although Verizon will own 20 MHz of spectrum, it is not contiguous and until they can deploy Release 12 software code into their network, they will have to operate this spectrum as two separate 10 MHz channels.  Release 12 is likely a 2015 or maybe 2016 release since operators are either planning or deploying Release 10 currently. 

The industry talks alot about Carrier Aggregation (CA) but there are several facts that are not well understood.  First, Release 10 includes the functionality for carrier aggregation but the frequency band definitions for the US are not included until Release 11.  Another point that needs to be understood is that the initial definitions require that aggregated carriers be in contiguous blocks in different spectrum bands (inter-band) or in separate blocks but in the same band (intra-band).   For Release 11, only 2 carriers can be aggregated together.  For Release 12, Verizon has sponsored a work group that will allow 3 carriers to be aggregated, 1 from the 700MHz band and 2 different carriers from the AWS band.  Thus, Release 12 will be necessary for Verizon to aggregate their two AWS blocks of spectrum with their 700 MHz LTE.


The Spectrum Grid view is sorted by the EA geographical area which show that the AWS B and C licenses have not be dis-aggregated.  The A channel licenses do show discontinuity since they were originally auctioned as CMA licenses.  AT&T through their Leap purchase will strengthen their AWS ownership in this market.

To look at the competitive picture for spectrum in the St Louis market (EA-96) we can look at the 
Company By Band worksheet from the AllNet Labs' Spectrum Ownership Analysis Tool.  Looking first at Verizon, we can see the variety of spectrum depths across the EA that Verizon indicated in their FCC filing. Verizon will range from 62 MHz to 117 MHz depending on the county.  The only county that Verizon controls 117 MHz is Montgomery County, MO which is 40 miles west of St. Louis.  

Looking at the other carriers in this market we see that US Cellular will still control between 32 MHz and 69 MHz, while AT&T with their Leap purchase will control between 61 MHz and 105 MHz.


T-Mobile controls between 40 MHz and 60 MHz with two counties at 70 MHz and Sprint with their Clearwire purchase controls between 130 MHz and 242 MHz.  





Effect of WiFi Off-loading Fri, Oct 18, 2013

For the past month I have been examining the effect of WiFi off-loading based upon my usage habits.  To do this leave WiFi turned off so my phone only receives data service from a commercial carrier network.  This was not a simple task because the Smartphone network optimizer will continue to request to have WiFi turned on and whenever you are using location services (Google+) not having WiFi provides a notification "to improve you location, please turn on WiFi".

My typical monthly data usage averages around 1.3 GB per month with WiFi enabled.  I travel infrequently and have WiFi both at home and work.  I think it is important to note that my work WiFi doesn't block YouTube, Pandora, Facebook, or WatchESPN, but I typically use a WiFi only tablet for music streaming or the watching a major sporting event e.g The America's Cup or the MBL playoffs.

In the month of September, I ran 5.7 GB of data in what I consider to be a typical work month.  What this equates to is 3.4 GB of data that was off-loaded from the carrier network to the WiFi network for which I also pay.  Another way to look at it is that my carrier only sees 1/3 of my usage.

Using some of the wholesale data rates that have been thrown around in the trade press, $5/GB; the cost to support my data usage through a WiFi Off-loading provider would be $17/month.  If I am paying my carrier $30/month for my data usage and they pay a Wi-Fi off-loading provider $17/month, they only end up with $13/month to offset their operational expenses (site leases, backhaul costs, employees...)

When you consider the "true" smartphone usage and where the majority of that traffic is handled today, it is clear why cellular carriers have been reluctant to purchase wholesale access to data or a WiFi off-loading partner.

Check back next month.  After my billing period closed, I spent the weekend out of town, so streaming two college football games on Saturday (Dish Anywhere) and 1 NFL game on Sunday will all be part of my October usage.  With just 9 days on my billing cycle, I have already consumed 3.3 GB.



Sprint - Seamless, High Capacity, High Speed, 2.5 GHz Network Tue, Jul 30, 2013

Sprint completed the 2Q - 2013 earning call this morning providing a few details about their plans for Clearwire's 2.5 GHz spectrum.

Sprint intends to overlay all of the 38,000 cell sites with the 2.5 GHz spectrum.  Clearwire has stated previously that 40% of their 16,000 sites are at the same towers as Sprint.   Steve Elfman clearly stated that the 2.5 GHz network would have a higher cell density, guaranteeing that 2.5GHz only sites will be prevalent in Sprint's network.  Sprint has clearly signaled a return to the original Clearwire vision of a seamless, high capacity, high speed, wireless network.

Let's go through the site numbers:

1) Sprint expects 2000 sites supporting 2.5 GHz TDD-LTE this year.  This was Clearwire's original commitment with the capacity hotspot mission.  Clearwire had fairly firm plans to expand this site count to 5000 sites (hotspots).

2) 40% of Clearwire site (6,400) are located at the same tower as Sprint.  Will Sprint move these sites onto their tower lease and back-haul?  Saving the additional tower lease makes sense, but shifting the back-haul capacity from the "free" microwave back-haul, to Sprint's lease circuits would be adding a large and growing expense to Sprint's bottom line.  A mis-understood fact on the wireless carrier back-haul is that although they will describe the back-haul as fiber back-haul with "unlimited bandwidth", the carriers are typically paying for bandwidth services delivered on fiber.  This means, a 100 Mbps back-haul circuit is provided to the site on fiber for a cost based upon the back-haul capacity (100 Mbps).  If Sprint added Clearwire's traffic to there existing back-haul, they would have to double or triple the capacity, probably doubling their overall back-haul expense.

Steve Elfman also made some interesting comments related to Sprint's 800 MHz spectrum (iDEN).  He felt it was important to deploy for in-building penetration.  I am still waiting to hear if there is a significant deployment of Sprint's 800 MHz spectrum in rural areas (with CDMA and LTE).  If you look at the Virgin Mobile coverage maps, you can see the landmass covered by Sprint's network.
  Expanses (non-green areas) in the West/Northwest and Southeast could utilize a Sprint 800 MHz greenfield build.  I continue to believe that the primary benefit of lower band spectrum (600,700, Cellular) is coverage in less dense areas.  I don't believe that there is a significant different building penetration improvement at the lower frequencies.

T-Mobile - USCellular, Larger LTE Pipes Fri, Jun 28, 2013

T-Mobile announced an acquisition this morning of USCellular's AWS spectrum in several markets.  This was clearly foreshadowed when I analyzed the Sprint - USCellular PCS spectrum deal earlier this year.

On this chart from the Spectrum Ownership Analysis Tool, you can see the PCS spectrum in Chicago and St. Louis that Sprint acquired along with the subscribers and network.  Thus it was clear to see that USCellular's AWS(B) and AWS(E) spectrum was no longer needed.

It clearly makes sense for T-Mobile to acquire this spectrum as indicated in the chart below.  In St Louis, T-Mobile will increase their LTE Channel size from 10MHz to 25MHz and in Kansas City, T-Mobile will increase from 10MHz to 15MHz.  The chart also highlights the important spectrum position that Leap hold in the AWS band which both T-Mobile and Verizon would desire to add to their portfolio.


LTE Band Class Graphical Reference Thu, Jun 27, 2013

With AT&T's announcement that they are meeting some challenges related to testing operation between LTE Band Class 29 and Band Classes 2 and 4, I figured that many readers would appreciate a reference map for how these band classes relate to the US mobile radio and satellite spectrum bands.

All of these screenshots are from the AllNet Labs Spectrum Ownership Analysis Tool, where we display and provide analysis tools related to spectrum ownership for all of the US mobile radio and satellite spectrum bands for all 50 states and US territories. AllNet Labs Spectrum Ownership Analysis Tool

In the images below, the band classes are color coded Gray for Uplink Spectrum, Yellow for Downlink Spectrum, and Blue for Spectrum supporting Time Division Duplex.

700MHz Spectrum

SMR/Cellular/L-Band Spectrum


AWS/PCS Spectrum - Uplink


PCS/AWS Spectrum - Downlink

WCS/EBS/BRS Spectrum


LTE Carrier Aggregation - What's Going On... Wed, Feb 13, 2013

Recently I reviewed the 3GPP Standards site to check in on the status of LTE Carrier Aggregation.  I found a gold mine of information.

First a few definitions:  Carrier Aggregation allows a wireless carrier to band together different blocks of their spectrum to form a larger pipe for LTE.  This can be accomplished in two ways:  Inter-band and Intra-band.

Inter-band combines spectrum from two different bands.  The spectrum in each band to be combined must be contiguous within that band.  Intra-band combines spectrum from two non-contiguous areas of the same band.

Here is a link to an article from 3GPP that explains Carrier Aggregation.

Below is a table summarizing the relevant 3GPP working group descriptions for Carrier Aggregation.

First of all, the current network release for all carriers is Release 9.  T-Mobile, Sprint, and Clearwire have announced that they are deploying Release 9 equipment that is software up-gradable to Release 10 (LTE Advance).  From the chart, it does not appear that there are any carrier configurations planned until Release 11.  Release 10 appears to be a late 2013 commercial appearance and Release 11 will likely be very late 2014 or mid-2015.  For Carrier Aggregation to work it must be enabled and configured at the cell site base station and a compatible handset must be available.  The handsets will transmit and receive their LTE data on two different spectrum bands for the Inter-band solution.  All handsets currently only operate in one mode, 700MHz, Cellular, PCS, AWS, or 2.5GHz.

Highlights by Carrier:
Canada:  Rogers Wireless will have support for inter-band aggregation between their AWS spectrum  and the paired blocks of 2.5GHz spectrum.

AT&T: Inter-band support in Release 11 for their Cellular and 700MHz spectrum, inter-band support to combine their AWS and Cellular spectrum, as well as configuration to support combining  their PCS and 700MHz spectrum.  All of the 700MHz band plans only include their 700B/C holdings. No 700MHz inter-operability.

USCellular: Inter-band support in Release 11 for Cellular and 700MHz (A/B/C).  No support for PCS or AWS spectrum combinations

Clearwire: Intra-band support for the entire 2.5GHz band.  China Mobile is also supporting this with an inter-band aggregation between 2.5GHz and their TDD 1.9GHz spectrum.

Sprint:  Support in Release 12 for combining (intra-band)their holding across the PCS spectrum, including their G spectrum but not the un-auctioned H spectrum.  No band support for their iDEN band or the 2.5GHz band.

T-Mobile:  Support in Release 12 for intra-band in the AWS band and inter-band between AWS and PCS.

Verizon:  Ericsson appears to be supporting Verizon's need to combine (inter-band) between AWS and 700MHz C.  Not support for Verizon's Cellular or PCS holdings.

Dish:  Release 12 support to combine their S band (AWS4) spectrum (inter-band) with the 700 MHz E holdings.   This is the only aggregation scenerio for the US that combines FDD operation (AWS4) with TDD operation (700MHz E).

Carrier Plans for VoLTE Tue, Feb 12, 2013

In listening to the wireless carrier earnings calls for 4Q2012, many of the analysts are interested in the timing for offering VoLTE.  VoLTE stands for Voice over LTE, in other words, Carrier VoIP.  It is unclear whether the carriers are looking at this as a launch of a handset supporting only VoLTE or whether it is essentially a dual-mode handset providing VoLTE where the quality is acceptable and traditional 2G or 3G voice everywhere else.

There is no doubt that 4G speeds enable VoLTE and all of the other VoIP over-the-top (OTT) providers like Skype, OOMA, and GoogleTalk.  Carriers will have the ability to better control their customer experience with their VoLTE service since they can change the QOS settings because they can identify the data as a voice call.

I believe that Verizon has essentially stamped a date for their networks being 100% VoLTE for voice as the same 2021 data for shutting down CDMA.  This is a reason time frame for networks to mature so they are capable of supporting VoIP seamlessly across the carriers footprint.

A key consideration that is not openly discussed, is the fact that the traditional wireless carriers that began as wireless voice providers have only overlaid their 4G data networks on top of a network that was originally designed for voice.  This is important because capacity is impacted differently on a voice network than a data network.  A voice user, whether 100ft or 4 miles from a site, essentially consumes the same amount of voice capacity.  A data user, 100ft from the site, is capable of transmitting his data with a high efficient data modulation scheme, which reduces the capacity burden on the cell site.  A user, 4 miles from the site, will receive his data using a more robust modulation scheme with a significant cost to the site's capacity.   In this example the first user transmits his data on a train that has 64 cars for data, while the user 4 miles from the site only has 4 cars to carry his data.

How does this affect VoIP and the launch of VoLTE?  With the diagram above I have indicated the areas of each cell site that will have high, medium, and low capacity based upon their voice network design.  These are the areas that VoIP voice quality will suffer due to lack of coverage or capacity.  With each carrier only offering LTE on one channel, the option to add additional spectrum to solve the capacity issue is not available.  Carriers are pursuing small cell solutions to meet this capacity need but it will require extensive time to mature the networks to support VoLTE and VoIP on a standalone basis.

DISH Counter-Offer for Clearwire Wed, Jan 09, 2013

Dish's counter-offer for Clearwire is intriguing.  I recently completed a presentation detailing the challenges of a spectrum sale in the EBS/BRS spectrum.  Clearwire's press release states that this offer was on the table when Sprint's offer was received but Sprint's offer was deemed better.  Tim Farrar's Blog indicates that the spectrum sale would likely be for Clearwire's BRS spectrum.  This is a realistic assumption.  In my presentation (linked in a previous blog) I highlighted that one of the primary problems with the leased spectrum is that it has limited geographic coverage, covering many of the dense metro areas but not contiguous all the way to a county or BTA border.  There are still a few elements of a BRS spectrum sale that should be understood.


From the image above, the BRS spectrum sale would include the Orange (BRS1/BRS2) channels, the Pink (E channels), Light Blue (F channels) and Brown (H channels). This would equate to one contiguous block of 55.5MHz of spectrum, a 12MHz block of spectrum (E4,F4), and the isolated BRS1 channel.  The 12MHz block could only be used if mid-band video operations have ceased in a market.  Currently, I don't believe that any of the Top 10 markets have completed ceased video operations.  The 55MHz of spectrum can support 2 - 20MHz TDD-LTE channels.  This would virtually eliminate the ability to utilize the EBS/BRS spectrum for any FDD-LTE operations.  It may be possible with a guardband in the H channels to operate the D channels and G channels in a FDD-LTE configuration.

In looking at the LTE Bandplans, the potential Dish spectrum allocation would miss the international TDD-LTE Band 38 which Softbank, China Mobile, and the UK auctions are using.  We will have to watch carefully to see if international devices will include functionality of Band 41.

My last area of concern is whether that will leave enough spectrum for Clearwire to continue to operate their WiMax network as they bring their TDD-LTE network online.  Additionally, with the geographic limitations of the leased channels, there may be a limited number of sites operating on Clearwire's network today, that won't have available spectrum without the owned channel spectrum.

Webcast: Clearwire's Spectrum Explained Tue, Jan 08, 2013


Below is a link to an Investor's Presentation provided by AllNet Labs detailing the licensing, geographic, and leased versus owned challenges of Clearwire's Spectrum.

Audio and Slide Presentation

Presentation Outline

Agenda

  • History of the EBS/BRS Spectrum
  • Owned versus Leased Spectrum
  • LTE Band Configuration
  • Recent Auctions
  • Substantial Service
  • Issues before the FCC
  • Spectrum Sale Challenges

Is it PCS H or AWS H? FCC H Block Auction Rulemaking Fri, Dec 28, 2012

Last week the FCC released its Notice of Proposed Rulemaking for the Service Rules for the Advanced Wireless Services H Block.  So despite the fact that the H channel in discussion here are virtually adjacent to the PCS block of spectrum, they are referred to as AWS H.  I'll continue to call them PCS H because that have no relationship with the spectrum commonly referred to as AWS (1.7 and 2.1GHz).  My primary question as I reviewed this rulemaking, was how the auction would be structured so there would be interest for this spectrum block, beside Sprint.

Clearly, this spectrum block is more valuable to Sprint, since it can be combined with its nationwide PCS G block to enable Sprint to migrate to a 10x10 LTE channel from its current 5x5 LTE channel.  Doubling their channel size will get this LTE deployment on par with Verizon, AT&T, and T-Mobile's initial deployments.

Interestingly, the FCC doesn't comment to the use of the channel for LTE, they consider a deployment with CDMA more likely.  This is probably the only way to think that there will be bidders beside Sprint.  A T-Mobile or AT&T could purchase this spectrum for additional WCDMA capacity since a WCDMA channel would fit perfectly in this block, but I believe that a deployment of WCDMA in this block would be delayed by the 3GPP standards board in the same way that Sprint's LTE deployment would be waiting for standards body support for a new band plan.

Two other interesting notes from this rulemaking.  The FCC is proposing to issue the spectrum with Economic Area (EA) Geographical Licensing.  Above is a FCC map depicting the recognized Economic Area boundaries.  Evidently EA licensing was chosen to encourage build outs in rural areas.  Given that the build out requirements are easily met by building only the large cities first, I don't agree with this logic.  More likely, the EA licensing allows the FCC to receive a higher price for rural areas since their POPS roll up within a more valuable metropolitan area.

The licensees will receive 10-year licenses with the requirement that 40% of the POPS are covered within 4 years and that 70% are covered before the license is renewed after year 10.  Neither of these requirements will drive investment into rural areas.

This spectrum will be challenging to utilized near the borders: San Diego, Detroit, Buffalo, and McAllen/Brownsville since Canada and Mexico are running 3-4 years behind the US in spectrum policy.  The use of this spectrum in border markets has to be done without interference with the Canadian and Mexican systems currently using this spectrum.

Lastly, this spectrum comes with a requirement to share the microwave relocation costs that Sprint and UTAM incurred to make the PCS G block usable.

Sprint Small Cells (Not Small Cells) Thu, Dec 27, 2012

Sprint Small Cells - Light Reading

Above is a link to a Light Reading interview with Sprint VP of Network Development and Engineering Iyad Tarazi. The hot topic in wireless is small cells.  Clearly the carriers are blurring the definitions of small cells to demonstrate that they have a large installed base or are significantly down the road for new network installations.  From Iyad's interview, Sprint has over 500,000 femto cells providing primarily indoor coverage enhancements to customer residences.  These are using the customer's broadband service for connectivity and do not support handover of voice or data calls.  (Calls drop as you leave home and need to be re-originated on the carrier network.  Iyad describes the small cell developments for their LTE coverage.  It is not stated, but it is likely that this development is only for their PCS G frequency block, not Clearwires forthcoming LTE.  In addition, I would challenge whether they meet the definition for small cells.  Sprint is continuing down the path of a non-network integrated coverage device.  Whether installed in a small business or a residence, the products Iyad described are not integrated with Sprint's macro network, do not provide interference protection to that network, and will not hand over voice or data calls over without dropping the connections.  This is really no improvement to providing WiFi coverage and is deceptive to include in the small cell discussion where a prerequisite should be to provide seamless integration with the macro network.  What Sprint has solved for their version of the "small cell" is the impact of providing cost effective backhaul connectivity to the small cell.  In all of the cases that Sprint has developed a "small cell" product, they are utilizing the customers backhaul facility for connectivity.  To get true integration with their carrier/macro network, Sprint will need to provide and pay for backhaul to their facilities for small cells.

Why Couldn't Clearwire Sell Their Spectrum? Tue, Dec 18, 2012

Another area of interest from the Sprint / Clearwire conference call yesterday were Erik Prusch's comments related to Clearwire's attempts to sell spectrum in 2010.  Erik indicated that the offers they received were below value.

I will be conducting a webinar for GLG Research on January 4, 2013 where I will be discussing the history and challenges of Educational Broadcast Service (EBS) and Broadband Radio Service (BRS) spectrum.  I believe that the undervalue offers were due to issues with the spectrum channelization, geographic boundaries, unlicensed channels, and FCC mandated obligations for leased spectrum.

my wishlist